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Abstract

We consider the problem of parametric spectral analysis of two-dimensional (2D) magnetic resonance spectroscopy (MRS) data. Esti-
mating the signal components from 2D MRS data is becoming common practice in many clinical MR applications. The most frequently
used signal processing tool for this estimation problem is the non-parametric 2D-FFT. There are several alternative parametric methods
available to perform this analysis, yet their computational complexity is generally rather high and it becomes prohibitive when the num-
ber of points in the measured data matrix is large. In this paper, we propose a novel signal parameter estimation technique which oper-
ates on a pre-specified sub-area of the 2D spectrum. This area-selective approach can be used either to estimate only the signal
components of main interest in the data, or to compute signal parameter estimates of all present signal components as the computational
burden for each sub-area is low. In the numerical example section we consider both simulated data and in vitro 1H data acquired from a
1.5 T MR scanner.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The use of two-dimensional (2D) spectral analysis tech-
niques for quantitation of 2D MRS data has been empha-
sized in numerous papers published in the last decades. One
of the first references introducing the 2D-FT (Fourier
Transform) to the MR community was [1]. As a non-para-
metric spectral analysis method the 2D-FFT (Fast FT) is
still widely used even though it suffers from several limita-
tions such as poor resolution and high-sidelobe effects (see
[2] and the references therein). The inability to distinguish
between signal and noise is another general drawback of
a non-parametric approach. As a consequence a significant
number of parametric spectral analysis techniques, which
can be applied to 2D MRS data, have been developed in
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recent years. The previous literature on 2D parametric
spectral analysis includes the linear prediction (LP)
approach (see, e.g., [3,4]), the matrix enhancement and
matrix pencil (MEMP) method (see [5–7]), the 2D-ESPRIT
method (see [8,9]), and the 2D-DMUSIC of [10]. The 2D
frequency estimation problem is also closely related to
the joint azimuth/elevation estimation in array signal pro-
cessing (see, e.g., [11–14]).

One of the main problems of the parametric approach is
its relatively high computational burden. Already in the
one-dimensional (1D) case the computational complexity
of a parametric technique involving, for example, an
SVD (singular value decomposition) of a data matrix can
be significant since the measured FID (free induction
decay) typically contains thousands of samples. The
attempt to reduce this significant computational complexi-
ty is one of the main reasons why several papers have been
published recently on frequency-selective spectral analysis
for 1D MRS data (see, e.g., [15–21]). In a 2D scenario this
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Fig. 1. Graphical illustration showing how to set the parameters
k1; kM1

; l1; lM2
for a specific area of interest (shaded).
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computational-complexity problem increases dramatically
with increasing the number of points and frames in the col-
lected data matrix. In this paper, we consider a frequency-
selective approach for 2D MRS data, which we refer to as
area-selective spectral analysis. The only previously pre-
sented method (to the authors knowledge) which considers
area-selective spectral analysis is the 2D-FDM (filter diag-
onalization method) (see, e.g., [22]). Even though satisfac-
tory results have been reported using the 2D-FDM, the
said method is not fully parametric in the manner of the
approach considered in this paper (see below). The list of
modes estimated using the 2D-FDM does not separate
the signal components from the noise components. The
technique suggested herein allows for computation of only
the signal parameters corresponding to a (pre-specified)
number of signal components.

Consider the following model commonly used for 2D
MR data (see, e.g., [7,10])

yðt1; t2Þ ¼
Xm

p¼1

qpk
t1
p ct2

p þ �ðt1; t2Þ;

t1 ¼ 0; . . . ;N 1 � 1; t2 ¼ 0; . . . ;N 2 � 1;

kp ¼ e�a1pþix1p ; cp ¼ e�a2pþix2p ; ð1Þ

where m denotes the total number of signal components,
(qp, aqp, xqp; q = 1,2) are the complex amplitude, dampings
and angular frequencies (or simply frequencies, for short)
of the pth component (note that the sampling period has
been absorbed in aqp and xqp, for notational convenience),
�(t1, t2) is a noise term and N1, respectively, N2 denotes the
number of available samples in each of the two dimensions
(i.e., the collected 2D MRS data can be interpreted as a
matrix containing N2 frames, each of length N1). Note that
the model in (1) assumes a Lorentzian lineshape for each of
the signal components in {y(t1, t2)}. The case of non-
Lorentzian lineshapes is beyond the scope of this paper.

Assume that we are interested in estimating only a lim-
ited number of the signal components in (1) that are con-
tained in a small region of the 2D spectrum. The number
of these components is denoted by

n 6 m ð2Þ

and is assumed to be given. By focusing only on a small re-
gion in the spectrum the required computational complex-
ity for estimating the corresponding signal parameters can
be decreased significantly. In practice, if we are interested
in estimating the signal parameters of all m components
this can be done by splitting the total spectral area into sev-
eral smaller sub-areas where the components are known to
lie, and applying the algorithm of this paper to each sub-
area.

The considered area comprising the n signal components
of interest can be specified by a number of Fourier frequen-
cies in each dimension. In the following we will refer to the
spectral dimension corresponding to the modes fkpgm

p¼1 as
the ‘‘k-dimension’’ and to the spectral dimension
corresponding to the modes fcpg
m
p¼1 as the ‘‘l-dimension’’.

The two vectors of Fourier frequencies specifying the
sub-area of interest are then defined as:

k-dimension;
2pk1

N 1

;
2pk2

N 1

; . . . ;
2pkM1

N 1

� �
; ð3Þ

l-dimension;
2pl1

N 2

;
2pl2

N 2

; . . . ;
2plM2

N 2

� �
; ð4Þ

where k1; . . . ; kM1
, respectively l1; . . . ; lM2

are integers. A
simple illustration showing how to set the parameters
k1; kM1

; l1; lM2
for a specific area of interest is given in

Fig. 1.
2D MRS has been recently used in clinical applications,

such as 2D-COSY and 2D-JPRESS (see, e.g., [23,24] and
the references therein), and the interest in it is growing.
The technique presented in this paper can be used for quan-
titation of specific signal components in any 2D data exper-
iment. Therefore, the suggested method is outlined in a
general manner without referring to the specific notation
commonly used in a certain application. Similarly, the pre-
sented numerical study is not focused on only one type of
MR data nor on a certain clinical application.

In Section 2, we derive a scheme that provides a solution
to the area-selective spectral analysis problem introduced
above, which we call 2D-ASEEM (area-selective estimation
method). The goal is to obtain estimates of the signal
parameters (qp, aqp, xqp; q = 1,2) corresponding to the n
signal components located inside the area specified by (3)
and (4). In Section 3, we present several numerical exam-
ples considering both simulated data and in vitro 1H data
acquired from a 1.5 T MR scanner. Finally, in Section 4,
we provide some concluding remarks.

2. 2D-ASEEM

We will start by decomposing the 2D signal processing
problem of interest into two 1D estimation problems.
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The following derivation, which is inspired by [25] and [26],
consists of three main steps:

• Estimation of the modes fkpgn
p¼1 in the k-dimension.

• Estimation of the modes fcpg
n
p¼1 in the l-dimension.

• Combined estimation of the complex amplitudes fqpg
n
p¼1

and pairing of the estimates of fkpgn
p¼1 and fcpg

n
p¼1.

We will address these three steps in a one-by-one man-
ner below.

Step 1. For estimation of fkpgn
p¼1 we will use the follow-

ing notation:

wk ¼ ei 2p
N1

k
; k ¼ 0; . . . ;N 1 � 1; ð5Þ

uk ¼ ½wk � � �wS1
k �

T
; ð6Þ

vk ¼ ½1wk � � �wN1�1
k �T; ð7Þ

yt2
¼ ½yð0; t2Þ � � � yðN 1 � 1; t2Þ�T; t2 ¼ 0; . . . ;N 2 � 1; ð8Þ

Y kt2
¼ v�kyt2

; k ¼ 0; . . . ;N 1 � 1; t2 ¼ 0; . . . ;N 2 � 1; ð9Þ

where S1 is a user parameter hereafter chosen as S1 ¼ bM1

3
c

(º Æ ß indicates the integer part) and where * denotes the
conjugate transpose. The choice of the user parameter S1

is not critical for the performance of the suggested method
(see below for more information on this aspect). The vector
vk corresponds to the kth Fourier vector and hence
fY kt2

gN1�1
k¼0 is the FFT sequence of the t2th data vector yt2

(t2 = 0, . . . ,N2 � 1).
For the area-selective analysis in the k-dimension we

also need the following notation:

Yt2
¼ ½uk1

Y k1t2 � � � ukM1
Y kM1

t2 �; ð10Þ
U ¼ ½uk1

� � � ukM1
�: ð11Þ

In [26] the following key equation is shown to hold for the
1D scenario (i.e. for a certain value of t2 in our 2D case)

Yt2
¼ AXt2 þ ~A~Xt2 þ CU þ et2 ð12Þ

where the S1 · M1 noise matrix et2
is defined similarly to

Y t2 for t2 = 0 , . . . ,N2 � 1; also

A ¼ ½aðk1Þ � � � aðknÞ�; ð13Þ
aðkkÞ ¼ ½kk � � � kS1

k �
T
; ð14Þ

Xt2
¼ ½xk1t2

� � � xkM1
t2 �; ð15Þ

xkt2
¼

q1c
t2
1 v�kbðk1Þ

..

.

qnc
t2
n v�kbðknÞ

2
664

3
775; ð16Þ

bðkkÞ ¼ ½1 kk � � � kN1�1
k �T ð17Þ

for the modes of interest whose frequencies belong to the
interval in (3), and similarly ~A and ~Xt2

for the modes out-
side (3). Note that the matrix A spans the signal subspace
in the k-dimension. The matrix CU in (12) can be seen as
a remainder term and its explicit expression is of minor
importance in this derivation (see below).

Next we assume that
M1 P nþ S1: ð18Þ
Note that we can always choose the user parameter S1 so
that the condition in (18) is fulfilled. Besides (18), S1 should
also satisfy the inequality S1 <

M1

2
(see, e.g., [2] for more

information). In this paper we set S1 ¼ bM1

3
c based on

empirical experience. Under (18), the orthogonal projec-
tion matrix onto the null space of U is given by

P?U ¼ I�U�ðUU�Þ�1
U; ð19Þ

where I is the identity matrix. We will eliminate the third
term in (12) by post-multiplying this equation with P?U
(see below). However, before doing so we briefly discuss
the contribution from the second and fourth terms in
(12). The elements of the noise term et2 are usually much
smaller than the elements of AXt2 . In addition, assuming
that the out-of-area components are not much stronger
than the components in the area of interest and that the fre-
quencies of the former are not too close to the interval in
(3), the elements of ~Xt2

are also much smaller than the ele-
ments of Xt2

. Following the discussion in [26], it can be ar-
gued that even if the frequency of an interfering signal
component is relatively close to the area of interest, we
can expect that the ‘‘spectral tail’’ of the out-of-area com-
ponent may well have a small dynamic range in the area
of interest. In addition, it is shown in [26] that both the sec-
ond and fourth term in (12) are roughly proportional to U.
As a consequence, the out-of-area components and the
noise term in (12) will be attenuated via the post-multipli-
cation by P?U .

It follows from the previous discussion that

Yt2
P?U � AXt2

P?U ; t2 ¼ 0; . . . ;N 2 � 1: ð20Þ
Due to the exponential damping in the l-dimension, the sig-
nal-to-noise ratio (SNR) in (20) drops quickly as t2 increas-
es. In the numerical example section we will use (20) only
for t2 ¼ 0; . . . ; bN2

50
c þ 1 (assuming N2 P 256) for estimation

of the modes fkpgn
p¼1, to avoid including low-SNR frames.

Our empirical experience is that the estimation perfor-
mance does not change significantly when the number of
considered frames is taken as any small fraction of the total
number of available frames. We construct a matrix Y given
by

Y ¼
XbN2
50 cþ1

t2¼1

Yt2
P?U � A

XbN2
50 cþ1

t2¼1

Xt2

0
@

1
AP?U : ð21Þ

Note that the effective rank of Y is equal to n. Thus, we can
use a standard SVD-based technique (see, e.g., [2] and be-
low) to retrieve the modes fkpgn

p¼1 from Y.
Let W be the S1 · n matrix whose columns are the left

singular vectors of Y associated with the n largest singular
values. In addition, let

Wu ¼ ½IS1�1 0�W; ð22Þ
Wd ¼ ½0 IS1�1�W; ð23Þ
and let
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U ¼ ðW�
uWuÞ�1

W�
uWd : ð24Þ

Estimates of the modes fkpgn
p¼1 can be obtained as the

eigenvalues of U (see, e.g., [2]).
Step 2. Estimates of the modes fcpg

n
p¼1 are obtained

transposing the collected data matrix in (1) and applying
to it a frequency-selective scheme, similar to Step 1, in
the l-dimension.

Step 3. Finally, we need to pair the estimates of fkpgn
p¼1

and fcpg
n
p¼1 to obtain a correct set of estimated signal

modes fk̂p; ĉpgn
p¼1. We also need to compute estimates

fq̂pgn
p¼1 of the complex amplitudes fqpg

n
p¼1. Both opera-

tions can be performed simultaneously by minimizing the
sum of squared errors between the original data and the
reconstructed noise-free data, in the frequency domain,
with respect to fqpg

n
p¼1. This minimization has to be per-

formed for all possible pairs fk̂p; ĉpgn
p¼1. Since the number

of signal components inside the area of interest is usually
low, we do not need to test more than a few combinations.
By letting YF denote the 2D-FFT of {y(t1, t2)}

YF ðk; lÞ ¼
XN1�1

t1¼0

XN2�1

t2¼0

yðt1; t2Þe�i 2p
N1

k
e
�i 2p

N2
l
;

k ¼ k1; . . . ; kM1
; l ¼ l1; . . . ; lM2

ð25Þ

the minimization problem can be written as

min
fqpg

XkM1

k¼k1

XlM2

l¼l1

jYF ðk; lÞ �
Xn

p¼1

qpCpðk; lÞj2 ð26Þ

where Cp is defined as the 2D-FFT of the reconstructed
data for the pth component based on a specific pairing
combination fk̂p; ĉpgn

p¼1

Cpðk; lÞ ¼
XN 1�1

t1¼0

XN2�1

t2¼0

k̂t1
p ĉt2

p e
�i 2p

N1
k
e
�i 2p

N2
l
;

k ¼ k1; . . . ; kM1
; l ¼ l1; . . . ; lM2

: ð27Þ

The solution to (26) can be obtained as

q̂ ¼

q̂1

..

.

q̂n

2
664

3
775 ¼

XlM2

l¼l1

c�1ðlÞ
..
.

c�nðlÞ

2
664

3
775 c1ðlÞ � � � cnðlÞ½ �

0
BB@

1
CCA
�1

�
XlM2

l¼l1

c�1ðlÞyF ðlÞ
..
.

c�nðlÞyF ðlÞ

2
664

3
775

0
BB@

1
CCA; ð28Þ

where cp(l) and yF(l) are the lth columns of the matrices Cp

and YF whose elements are {Cp(k,l)} and {YF(k,l)}. The
pairing procedure is completed by selecting the combina-
tion fk̂p; ĉpgn

p¼1 which gives the smallest sum of squared er-
rors in (26).

Remark. The case of non-distinct frequencies in either
dimension has been studied often in the previous literature
on 2D spectral analysis. Using the approach outlined
above, this problem can be taken care of easily. For the
case of non-distinct frequencies in the considered dimen-
sion the true number of frequencies is lower than the num-
ber of estimated frequencies (n), and hence we obtain
spurious frequency estimates. It is most likely that such
spurious frequency estimates are located well outside the
sub-area of interest, and therefore they can be easily disre-
garded. If a spurious frequency estimate happens to lie
within the selected sub-area it has to be included in (26).
However, since we select only the pair fk̂p; ĉpgn

p¼1 which
gives the minimum value of (26), spurious frequency pairs
are likely to be eliminated.

3. Numerical examples

We consider five different numerical examples below to
illustrate the performance of the suggested technique,
namely:

• A simulated 2 component data example where we esti-
mate the signal parameters of one small component
located in the spectral tail of a large nuisance
component.

• A simulated 11 component data example where we esti-
mate the signal parameters of two rather closely spaced
components.

• A modified case of the 11 component data example
above where the two components have identical fre-
quencies in the k-dimension.

• A simulated 5 component data example mimicking the
experimental data example in [10].

• An in vitro data example based on phantom 1H data.

3.1. Simulated 2 component data

Consider a 2 component 2D signal as in (1). The added
noise is zero mean, white and Gaussian distributed with
standard deviation r. Below the statistical parameter esti-
mation performance of 2D-ASEEM is presented for differ-
ent levels of noise. For comparison we also include the
temporal Cramér-Rao Bounds (CRBs) as lower bounds
on the variances of the signal parameter estimates (see,
e.g., [2]). Note that the CRBs are strictly valid only for
an unbiased estimator (see [27]), which is not necessarily
the case here. However, the CRBs are still useful for a qual-
itative performance analysis. The quality of the different
parameter estimates is measured as the relative root mean
square error (RRMSE) for each component p = 1, . . . ,n

[in percent]:

RRMSEp,100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

�

X�
t¼1

ðnp � n̂t
pÞ

2

n2
p

vuut ; ð29Þ

where � is the number of Monte-Carlo (MC) runs (we use
1000 here), np denotes the relevant parameter and n̂t

p is its
estimate obtained in the tth run.
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The parameters of the 2 signal components are present-
ed in Table 1. The number of samples of the considered
data matrix is 1024 · 256 (i.e., the length of each FID is
N1 = 1024 and we consider N2 = 256 collected frames).
The sampling frequency is 1 kHz. We focused on the small
component (component 1 in Table 1) to illustrate the esti-
mation performance of 2D-ASEEM when the component
of interest is affected by the spectral tail of a strong nui-
sance component (component 2 in Table 1) lying outside
the selected spectral area. This is a common scenario for
example in 1H MRS when the (residual) water component
is much stronger than the signal component(s) of interest.
The considered spectral area is relatively small compared
to the full spectral range. The lower frequency bounds k1

and l1 were set to 15 Hz, respectively, 8 Hz and the higher
frequency bounds kM1

and lM2
were set to 25, respectively

31 Hz, which corresponds to M1 = 11 and M2 = 7. The
RRMSEs for the parameters of interest (frequencies, dam-
pings, and amplitudes) are shown in Figs. 2–4 for compo-
nent 1 for increasing noise standard deviation.

From Figs. 2–4, we see that the statistical parameter
estimation performance of the suggested method is compa-
rable to the CRBs for this example. In Figs. 2 and 3 the
RRMSEs for x21 and a21 obtained using 2D-ASEEM are
sometimes lower than the corresponding CRBs. This phe-
nomenon can occur in a practical scenario due to the use
of a biased estimation method [27]. Note that r = 50 corre-
sponds to a very low SNR since the amplitude of the con-
Table 1
Signal parameters in the 2 component simulated data case; xqp,q = 1,2 are
the frequencies, aqp,q = 1,2 are the dampings, |qp| denote the amplitudes,
and arg(qp) are the phases (where arg(Æ) denotes the argument)

p x1p (Hz) x2p (Hz) a1p a2p qp

1 20 20 0.01 0.01 20 (eip/2)
2 100 100 0.01 0.01 320 (eip/2)
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Fig. 2. Frequency RRMSEs for component 1 in the simulated 2
component data example using 1000 MC runs.
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Fig. 4. Amplitude RRMSEs for component 1 in the simulated 2
component data example using 1000 MC runs.
sidered signal component is equal to 20 (see Table 1). The
reason why we let r take on such large values is to show
that even in the low SNR case the parameter estimates
obtained using the suggested technique are relatively close
to the CRBs.

For comparison purposes we also show the (zero-pad-
ded) 2D-FFT spectra, for the area of interest, of both the
original data and of the reconstructed data obtained using
the signal parameters estimated by 2D-ASEEM. The pre-
sented results are for a typical run using a noise standard
deviation equal to 30. All other user parameters are select-
ed as above. The resulting spectra are shown in Fig. 5 and
the signal parameter estimates obtained using 2D-ASEEM
are shown in Table 2. At this relatively low SNR the stan-
dard 2D-FFT fails to provide a distinct and reliable spec-
tral estimate of component 1. However, the estimates
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Fig. 5. 2D-FFT spectra of both the original data (a) and of the
reconstructed data obtained using the signal parameters estimated by
2D-ASEEM (b) in the simulated 2 component data case.

Table 2
Parameter estimates of component 1 obtained for one typical run using
2D-ASEEM in the simulated 2 component data case when r = 30

p x1p (Hz) x2p (Hz) a1p a2p qp

1 19.48 19.81 0.0087 0.0104 17.97 (eip1.18/2)

Table 3
Signal parameters in the 11 component simulated data case; xqp,q = 1,2
are the frequencies, aqp,q = 1,2 are the dampings, |qp| denote the
amplitudes, and arg(qp) are the phases

p x1p (Hz) x2p (Hz) a1p a2p qp

1 �86 �86 0.0167 0.0167 75 (ei0.75p)
2 �70 �70 0.0167 0.0167 150 (ei0.75p)
3 �54 �54 0.0167 0.0167 75 (ei0.75p)
4 152 152 0.0167 0.0167 150 (ei0.75p)
5 168 168 0.0167 0.0167 150 (ei0.75p)
6 292 292 0.0167 0.0167 150 (ei0.75p)
7 308 308 0.0167 0.0167 150 (ei0.75p)
8 360 360 0.0083 0.0083 150 (ei0.75p)
9 440 440 0.0951 0.0951 1400 (ei0.75p)

10 490 490 0.0083 0.0083 60 (ei0.75p)
11 530 530 0.0666 0.0666 500 (ei0.75p)
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Fig. 6. Frequency RRMSEs for components 4 and 5 in the simulated 11
component data example using 1000 MC runs.
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obtained using 2D-ASEEM are close to the true parameter
values. In addition, the reconstructed spectrum based on
the 2D-ASEEM signal parameter estimates contains little
noise or artifacts from out-of-area components.

3.2. Simulated 11 component data

In this subsection we consider a simulated 11 component
2D data example. As in the previous 2 component example
the added noise is zero mean, white and Gaussian distrib-
uted with standard deviation r. The parameters of the 11
signal components are presented in Table 3. The number
of samples of the considered data matrix is 512 · 512.
The sampling frequency is 3 kHz. We focused on estimat-
ing the parameters of components 4 and 5 in Table 3.
The considered spectral area is again relatively small com-
pared to the full spectral range. The lower frequency
bounds k1 and l1 were set to 129 Hz and the higher frequen-
cy bounds kM1

and lM2
were set to 193 Hz, which corre-

sponds to M1 = M2 = 12. The RRMSEs for the
frequencies, dampings, and amplitudes for components 4
and 5 are shown in Figs. 6–8 for increasing noise standard
deviation. As in the previous example (Section 3.1) we note
that the increase of the RRMSE in Figs. 6–8 is approxi-
mately linear in the noise standard deviation which indi-
cates a robust performance. Moreover, the RRMSEs are
well under 50% for all values of the noise standard devia-
tion used in this example.

3.3. Simulated 11 component data with non-distinct

frequencies

In order to show the performance of the suggested tech-
nique in the case where two signal components have iden-
tical frequencies in the k-dimension we modify the previous
11 component signal example slightly. The modifications
refer to components 4 and 5 and are shown in Table 4.
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Fig. 7. Damping RRMSEs for components 4 and 5 in the simulated 11
component data example using 1000 MC runs.
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Fig. 8. Amplitude RRMSEs for components 4 and 5 in the simulated 11
component data example using 1000 MC runs.

Table 4
Parameters of the modified components 4 and 5 in the simulated data case
where x14 = x15

p x1p (Hz) x2p (Hz) a1p a2p qp

4 160 152 0.0167 0.0167 150 (ei0.75p)
5 160 168 0.0167 0.0167 150 (ei0.75p)
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Fig. 9. Frequency RRMSEs for the modified components 4 and 5 in the
simulated data example where x14 = x15 using 1000 MC runs.
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Fig. 10. Damping RRMSEs for the modified components 4 and 5 in the
simulated data example where x14 = x15 using 1000 MC runs.
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All other data parameters are kept as in the 11 component
example in Section 3.2. The RRMSEs for the frequencies,
dampings, and amplitudes for components 4 and 5 are
shown in Figs. 9–11 for increasing noise standard devia-
tion. The numerical results in Figs. 9–11 are similar to
those in the previous example (Section 3.2). The main dif-
ference is that the RRMSEs of x1p and a1p (p = 1,2) in
Figs. 9 and 10 are lower than those in Figs. 6, 7. This is
probably due to the fact that we implicitly use the informa-
tion that x14 = x15 when estimating the parameters (i.e.,
we estimate the same parameters x1p and a1p (p = 1,2)
for two different components).

3.4. Simulated 5 component data mimicking experimental

data

In this section, we consider simulated data mimicking
the experimental data example used in [10]. The original
data set in [10] was obtained from the National Institute
of Health (NIH). Because we do not have access to the
experimental data, we will use the estimated signal param-
eters given in [10] as the true values of the signal parame-
ters to be estimated by 2D-ASEEM (see Table 5). In
addition, we move one of the components so that there
are two closely spaced components (p = 2,3 in Table 5)
which the conventional 2D-FFT cannot resolve. The
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Fig. 11. Amplitude RRMSEs for the modified components 4 and 5 in the
simulated data example where x14 = x15 using 1000 MC runs.

Table 5
Signal parameters in the 5 component simulated data case; xqp,q = 1,2 are
the frequencies, aqp,q = 1,2 are the dampings, |qp| denote the amplitudes,
and arg(qp) are the phases

p x1p (Hz) x2p (Hz) a1p a2p qp

1 0.200 �0.010 0.06 0.06 70 (ei0.50p)
2 �0.225 0.185 0.07 0.08 100 (ei0.50p)
3 �0.210 0.200 0.07 0.09 100 (ei0.50p)
4 0.050 �0.060 0.13 0.09 120 (ei0.50p)
5 0.060 0.320 0.21 0.29 400 (ei0.50p)
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Fig. 12. 2D-FFT spectrum of the simulated 5 component data mimicking
the experimental NIH data in [10].
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Fig. 13. Contour plot of the simulated 5 component data mimicking the
experimental NIH data in [10] where the selected sub-area is marked as a
small square.
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using 2D-ASEEM are indicated with small x-marks.

N. Sandgren et al. / Journal of Magnetic Resonance 183 (2006) 50–59 57
number of samples of the considered data matrix is
120 · 120. In Fig. 12 we show the 2D-FFT spectrum
obtained for one typical noise realization. The signal con-
tains 5 components and the SNR is approximately 30 dB.
In Fig. 13, we present a contour plot where the selected
sub-area is represented as a small square centered on com-
ponent 2 and 3 in Table 5. The size of the selected sub-area
is M1 = M2 = 13. In Fig. 14 we also show a zoom of the
sub-area of interest in Fig. 13 together with the true fre-
quencies indicated with small circles and their estimates
obtained using 2D-ASEEM indicated with small x-marks.
We note that the frequency estimates obtained using the
suggested technique are very close to the true values.

3.5. In vitro data

The suggested approach was tested on experimental 2D
MR spectroscopic data. We consider a GE MRS phantom
with known solutions of metabolites with the following
concentrations: 12.5 mM NAA, 10.0 mM creatine (Cr),
3.0 mM choline (Ch), 7.5 mM myoinositol (mI), 12.5 mM
L-glutamic acid (Glu), 5.0 mM lactate, and 0.5 mM c-ami-
nobutyric acid (GABA). Data were collected on a 1.5 T GE
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Signa MR scanner using a single channel quadrature head
coil manufactured by GE Healthcare Technologies, Mil-
waukee, WI, USA. An MR pulse sequence developed for
breast spectroscopy (BREASE) was used to acquire the
data. The region of interest for this MRS experiment was
an 8 cm3 volume located at iso-center. Each frame of data
was averaged from 16 acquisitions (NEX = 16). Prior to
processing phase-correction and water removal was per-
formed using non-water-suppressed reference data (see
[28] for more information). TR was 2000 ms, receiver
bandwidth was 2500 Hz, and N1 = 2048 complex valued
points were sampled for each of the N2 = 64 readouts.
Each frame of data corresponds to a different TE at equally
spaced intervals from 25 to 345 ms. Total scan time was
38 min and 40 s.

In Fig. 15 we show, similarly to Fig. 5 in the simulated 2
component data case, the original and the reconstructed
2D-FFT spectra, focusing on the choline component that
is of main interest in the BREASE application since it is
often associated with cancerous tumors. The size of the
selected sub-area was M1 = 12 and M2 = 10. Since the
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Fig. 15. 2D-FFT spectra of both the original data (a) and of the
reconstructed data obtained using the signal parameters estimated by 2D-
ASEEM (b) in the in vitro 1H data case.
number of frames (N2) is only 64 in this example we use
the first 6 frames in (21), instead of the recommended
bN2

50
c þ 1, for estimation of k.
The signal component in the two spectra have similar

frequency estimates. The difference between the original
and the reconstructed spectra is again related to the fact
that the 2D-ASEEM estimates are not significantly cor-
rupted by the spectral tails of strong adjacent components
(such as the water component) that lie outside the selected
area, nor by the measurement noise. Hence we can use the
suggested 2D-ASEEM method especially in scenarios
where the component(s) of interest cannot be easily esti-
mated using the conventional 2D-FFT.

4. Conclusions

A computationally efficient area-selective 2D parametric
spectral analysis technique was suggested that can be used
to estimate the parameters of selected components for
large-size data sequences for which parametric estimates
are usually difficult to obtain by using a full-band method.
The proposed approach can be used in any 2D MRS data
application, regardless of the pulse sequence or the specific
instrumentation employed. The technique attenuates effec-
tively the interference from measurement noise and out-of-
area components, which in the MRS data case can be dom-
inant. The full spectral area can be divided into several
smaller sub-areas and the proposed technique can be
applied to each sub-area, if estimation of all signal compo-
nents in the data is of interest. The obtained parameter esti-
mates can also be used to reconstruct a noise-free signal
containing only the selected components.
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